1,448 research outputs found

    Gamma-Ray Bursts: The Central Engine

    Get PDF
    A variety of arguments suggest that the most common form of gamma-ray bursts (GRBs), those longer than a few seconds, involve the formation of black holes in supernova-like events. Two kinds of ``collapsar'' models are discussed, those in which the black hole forms promptly - a second or so after iron core collapse - and those in which formation occurs later, following ``fallback'' over a period of minutes to hours. In most cases, extraction of energy from a rapidly accreting disk (and a rapidly rotating black hole) is achieved by magnetohydrodynamical processes, although neutrino-powered models remain viable in cases where the accretion rate is >0.05 solar masses per second. GRBs are but one observable phenomenon accompanying black hole birth and other possibilities are discussed, some of which (long, faint GRBs and soft x-ray transients) may await discovery. Since they all involve black holes of similar mass accreting one to several M\sun, collapsars have a nearly standard total energy, around 10**52 erg, but both the fraction of that energy ejected as highly relativistic matter and the distribution of that energy with angle can be highly variable. An explanation is presented why inferred GRB luminosity might correlate inversely with time scales and arguments are given against the production of ordinary GRBs by supergiant stars.Comment: 10 pages, 2 figures, Fifth Huntsville Conference on Gamma-Ray Bursts eds. R. M. Kippen, R.S. Mallozzi, & V. Connaughton, AI

    High energy transients

    Get PDF
    A meeting was convened on the campus of the University of California at Santa Cruz during the two-week interval July 11 through July 22, 1983. Roughly 100 participants were chosen so as to give broad representation to all aspects of high energy transients. Ten morning review sessions were held in which invited speakers discussed the current status of observations and theory of the above subjects. Afternoon workshops were also held, usually more than one per day, to informally review various technical aspects of transients, confront shortcomings in theoretical models, and to propose productive courses for future research. Special attention was also given to the instrumentation used to study high energy transient and the characteristics and goals of a dedicated space mission to study transients in the next decade were determined. A listing of articles written by various members of the workshop is included

    On the Progenitors of Collapsars

    Full text link
    We study the evolution of stars that may be the progenitors of common (long-soft) GRBs. Bare rotating helium stars, presumed to have lost their envelopes due to winds or companions, are followed from central helium ignition to iron core collapse. Including realistic estimates of angular momentum transport (Heger, Langer, & Woosley 2000) by non-magnetic processes and mass loss, one is still able to create a collapsed object at the end with sufficient angular momentum to form a centrifugally supported disk, i.e., to drive a collapsar engine. However, inclusion of current estimates of magnetic torques (Spruit 2002) results in too little angular momentum for collapsars.Comment: 3 pages, 5 figures, in Proc. Woods Hole GRB meeting, ed. Roland Vanderspe

    Long Gamma-Ray Transients from Collapsars

    Full text link
    In the collapsar model for common gamma-ray bursts, the formation of a centrifugally supported disk occurs during the first ∼\sim10 seconds following the collapse of the iron core in a massive star. This only occurs in a small fraction of massive stellar deaths, however, and requires unusual conditions. A much more frequent occurrence could be the death of a star that makes a black hole and a weak or absent outgoing shock, but in a progenitor that only has enough angular momentum in its outermost layers to make a disk. We consider several cases where this is likely to occur - blue supergiants with low mass loss rates, tidally-interacting binaries involving either helium stars or giant stars, and the collapse to a black hole of very massive pair-instability supernovae. These events have in common the accretion of a solar mass or so of material through a disk over a period much longer than the duration of a common gamma-ray burst. A broad range of powers is possible, 104710^{47} to 1050 10^{50}\,erg s−1^{-1}, and this brightness could be enhanced by beaming. Such events were probably more frequent in the early universe where mass loss rates were lower. Indeed this could be one of the most common forms of gamma-ray transients in the universe and could be used to study first generation stars. Several events could be active in the sky at any one time. A recent example of this sort of event may have been the SWIFT transient Sw-1644+57.Comment: submitted to Astrophysical Journa

    The Central Engines of Gamma-Ray Bursts

    Full text link
    Leading models for the "central engine" of long, soft gamma-ray bursts (GRBs) are briefly reviewed with emphasis on the collapsar model. Growing evidence supports the hypothesis that GRBs are a supernova-like phenomenon occurring in star forming regions, differing from ordinary supernovae in that a large fraction of their energy is concentrated in highly relativistic jets. The possible progenitors and physics of such explosions are discussed and the important role of the interaction of the emerging relativistic jet with the collapsing star is emphasized. This interaction may be responsible for most of the time structure seen in long, soft GRBs. What we have called "GRBs" may actually be a diverse set of phenomena with a key parameter being the angle at which the burst is observed. GRB 980425/SN 1988bw and the recently discovered hard x-ray flashes may be examples of this diversity.Comment: 8 pages, Proc. Woods Hole GRB meeting, Nov 5 - 9 WoodsHole Massachusetts, Ed. Roland Vanderspe

    Type Ia Supernova: Burning and Detonation in the Distributed Regime

    Full text link
    A simple, semi-analytic representation is developed for nuclear burning in Type Ia supernovae in the special case where turbulent eddies completely disrupt the flame. The speed and width of the ``distributed'' flame front are derived. For the conditions considered, the burning front can be considered as a turbulent flame brush composed of corrugated sheets of well-mixed flames. These flames are assumed to have a quasi-steady-state structure similar to the laminar flame structure, but controlled by turbulent diffusion. Detonations cannot appear in the system as long as distributed flames are still quasi-steady-state, but this condition is violated when the distributed flame width becomes comparable to the size of largest turbulent eddies. When this happens, a transition to detonation may occur. For current best estimates of the turbulent energy, the most likely density for the transition to detonation is in the range 0.5 - 1.5 x 10^7 g cm^{-3}.Comment: 12 pages, 4 figure
    • …
    corecore